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Abstract. We present a new time-symmetric evolution formula for the scalar wave equation. It is simply related
to the classical D’Alembert or spherical means representations, but applies equally well in two space dimensions. It
can be used to develop stable, robust numerical schemes on irregular meshes.

1. Introduction. It is notoriously difficult to construct stable high-order explicit march-
ing schemes for the wave equation on irregular meshes. In this note, we describe a new
approach to the construction of such schemes, based on a simple time-symmetric evolution
formula.

Initially we consider the Cauchy problem inRd ,

utt = 1u,

u(x,0) = u0(x),(1.1)

ut (x,0) = v0(x),

where1 denotes the Laplacian operator. In one space dimension, the solution can be written
using D’Alembert’s formula as

u(x, t) = 1

2
(u0(x − t)+ u0(x + t))+

∫ x+t

x−t
v0(s) ds.(1.2)

We can eliminate the term involving the datav0(x) by using the time-symmetric form:

u(x, t)+ u(x,−t) = u(x − t,0)+ u(x + t,0).(1.3)

In three dimensions, the analog of (1.3) is the spherical means formula [2, 4, 5]

u(x, t)+ u(x,−t) = ∂

∂t

[
t

4π

∫
|y−x|=t

u(y,0)dσ
]
,(1.4)

wheredσ is an element of surface area. In two dimensions, the situation is slightly more
complex because of the absence of a strong Huygen’s principle. The solution depends not
just on function values over the boundary of the disk of radiust, but on all values in its
interior:

u(x, t)+ u(x,−t) = ∂

∂t

[
1

2π

∫
|y−x|≤t

u(y,0)√
t2− |x− y|2

dy

]
.(1.5)

For numerical computation, formulas of the type (1.3), (1.4), and (1.5) are not widely
used because they do not suggest a procedure at physical boundaries and are not easily ex-
tended to more general partial differential equations.
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2. A central difference evolution formula. Consider the Fourier transform of the wave
functionu(x, t), namely

U(k, t) =
(

1√
2π

)d ∫
Rd

e−ik·xu(x, t)dx.

The partial differential equation in (1.1) can then be replaced by

Utt(k, t) = −|k|2U(k, t).

Solving this ordinary differential equation, we obtain

U(k, t) +U(k,−t) = 2U(k,0) cos(|k|t)

or

U(k, t)− 2U(k,0)+U(k,−t) =
[

2 cos(|k|t)− 2

−|k|2
]
· −|k|2U(k,0).(2.1)

Our main result follows.
THEOREM 2.1. Letu(x, t) denote a solution to the homogeneous wave equation

utt = 1u

in Rd . Then

u(x, t)− 2u(x,0)+ u(x,−t) =
∫
|y−x|≤t

Gd (|x− y|, t)1u(y,0) dy,(2.2)

where

G1(r, t) = t − r(2.3)

G2(r, t) = ln(t +
√

t2 − r2)− ln r(2.4)

G3(r, t) = 1

r
(2.5)

Proof. The formula (2.2) is obtained from the convolution theorem by transforming (2.1)
back to physical space. We provide a few more details for two space dimensions, where we
need to evaluate the kernel

G2(|x|, t) = 1

2π

∫ ∞
−∞

∫ ∞
−∞

[
2 cos(|k|t)− 2

−|k|2
]
· eik·x dk.

Changing to polar coordinates, we have

G2(r, t) = 1

2π

∫ ∞
0

∫ 2π

0

[
2− 2 cos(kt)

k2

]
eikr cos(θ−φ) k dk dφ

=
∫ ∞

0

[
2− 2 cos(kt)

k

]
J0(kr) dk,

wherek = (k cosφ, k sinφ), x = (r cosθ, r sinθ), and J0 denotes the Bessel function of
order zero. The desired result now follows from the formula ([1], 6.693)
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∫ ∞
0

Jν(kr) cos(kt)
dk

k
=


1

ν
cos(ν arcsin

t

r
) t ≤ r

rν

ν(t +√t2 − r2)ν
cos

νπ

2
t ≥ r,

with some care in taking the limitν → 0.
REMARK 2.2. Integration by parts and Green’s identities can be used to recover the

formulas (1.3), (1.4), and (1.5) from (2.2).
REMARK 2.3. Our evolution scheme can be viewed as an integral form of the widely-

used Lax-Wendroff method. The latter method uses central differencing in time to generate
the series

u(x, t)− 2u(x,0)+ u(x,−t) = t2utt (x,0)+ t4

12
utt t t(x,0)+ t6

360
utt t t t t(x,0)+ · · · .

Replacing the time derivatives with powers of the Laplacian, one obtains

u(x, t)− 2u(x,0)+ u(x,−t) = t21u(x,0)+ t4

12
12u(x,0)+ t6

360
13u(x,0)+ · · · .

Once a numerical approximation is chosen for the Laplacian operator, the Lax-Wendroff
scheme achieves arbitrary order accuracy in time by incorporating higher and higher pow-
ers of the Laplacian in a three time level scheme. Stability and spatial accuracy depend, of
course, on how the Laplacian is computed.

3. Forcing. We next consider the wave equation with a source term

utt = 1u + f(3.1)

which from Fourier transformation(u→ U, f → F) becomes

Utt(k, t) = −|k|2U(k, t) + F(k, t),

whose solution is given by

U(k, t)−2U(k,0)+U(k,−t) = 2
[
cos(|k|t)−1

]
U(k,0)+

∫ t

−t

sin
(|k|(t − |s|))
|k| F(k, s) ds.

The identity
sin(|k|t)
|k| = − ∂

∂t

(
cos(|k|t)− 1

|k|2
)

and integration by parts, in combination with (2.2), now yield
THEOREM 3.1. Let u(x, t) denote a solution to the inhomogeneous wave equation(3.1)

in Rd . Then

u(x, t)− 2u(x,0)+ u(x,−t) =
∫
|y−x|≤t

Gd(|x− y|, t)
[
1u(y,0)+ f (y,0)

]
dy(3.2)

+1

2

∫ t

−t
signum(s)

∫
|y−x|≤t−|s|

Gd (|x− y|, t − |s|) f ′(y, s) dy ds,

whereGd is given in(2.3)–(2.5) and f ′(x, t) = ∂ f (x, t)/∂t.
REMARK 3.2. The derivativef ′ of the forcing term may be analytically removed from

(3.2) by integration, yielding formulas that differ somewhat ford = 1,2,3. In three dimen-
sions, for example, the double integral reduces to the particularly simple form

1

2

∫
|y−x|≤t

f (y, |x− y| − t)− 2 f (y,0)+ f (y, t − |x− y|)
|x− y| dy.
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FIG. 4.1. An irregular mesh in one space dimension. The grid pointsx1, x2, x3, . . . are equispaced, but the
first grid point is near the physical boundaryx = 0. At regular grid points, the symmetric stencil (1.3) is used. For
the nodex1, the interpolatory scheme described in section 4.2 uses the indicated stencil. It requires values at the
irregular points marked by darkened circles.
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4. Discretization. In order to use formula (2.2) or (3.2) for computation, we need to
evaluate the integral

Qu(x) =
∫
|y−x|≤t

Gd (|x− y|, t)1u(y,0) dy,(4.1)

for each discretization pointx. In this brief note, we will restrict our attention to the one-
dimensional case. Away from physical boundaries, there are three clear options:

1. Use a quadrature formula designed for formula (4.1):

Qu(x) =
∫ x+t

x−t
(t − |y − x |)uyy(y,0) dy.(4.2)

2. Integrate by parts once to obtain

Qu(x) = −
∫ x

x−t
uy(y,0) dy +

∫ x+t

x
uy(y,0) dy.(4.3)

3. Integrate by parts twice to obtain

Qu(x) = u(x − t,0)− 2u(x,0)+ u(x + t,0).

All three formulas are exact (the last yielding the the time-symmetric scheme (1.3)). In
the first case, one needs to approximateuxx within the domain of dependence. In the sec-
ond case, one needs to approximateux within the domain of dependence. In the third case,
one needs to interpolateu(x − t,0) andu(x + t,0) from the possibly irregular mesh points
whereu(x,0) is known. The stability of each scheme will depend on how the interpola-
tion/approximation problem is handled.

To demonstrate the value of the integral formulation, we suppose that we are solving
the problem (1.1) with the Dirichlet boundary conditionu(0, t) = g(t). For the sake of
simplicity, we assume that the grid spacing inx is equal to the time stept. The only irregular
point is the first grid pointx1 which is arbitrarily close to the boundaryx = 0, creating what
is often referred to as asmall cellproblem (Fig. 4.1).

For nodes other thanx1, we can use any of the three options outlined above. Forx ≤
x1 ≤ t, let us define

ũ(x, τ ) = 2u(x,0)− u(x,−τ)+
∫ x+τ

0
(τ − |y − x |) uyy(y,0) dy.(4.4)
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Note thatũ satisfies the wave equation exactly, under the assumption that the functionuxx(x,0)
is extended outside the domainx ≥ 0 by zero. Taking into account the Dirichlet data, it is
straightforward to verify that the exact solution is

u(x1, t) = ũ(x1, t)+ g(t − x1)− ũ(0, t − x1).(4.5)

4.1. Quadrature schemes.The most straightforward use of the quadrature approach
is to computeuxx at time t = 0 by a finite difference method ofkth order accuracy. We
can then integrate the formula (4.2) or (4.4) exactly for a polynomial approximant ofuxx of
degreek−1. Fork = 2 this involves computing the second derivative using the usual 3-point
stencil at regular grid points and a one-sided 4-point stencil for the irregular pointsx = 0, x1.
The necessary quadratures are easy to derive for a piecewise linear approximation ofuxx .

4.2. Interpolation schemes.Integrating by parts yet again, we can rewrite the formula
(4.4) for ũ(x1, t) as

ũ(x1, t) = −u(x,−t)+ u(x1+ t,0)+ u(0,0)− (t − x1)ux(0,0).

Combining this result with (4.5), we have

u(x1, t) = −u(x1,−t)+ u(x1+ t,0)

+g(t − x1)+ g(−t + x1)+ u(t − x1,0).(4.6)

For regular grid points, we use the exact formula (1.3). Once we choose a method for ap-
proximating the valuesg(t − x1), g(−t + x1), andu(t − x1,0), we have a well-defined
evolution scheme. In our numerical experiments, we assume the Dirichlet datag(t) is known
analytically, so that we only need to interpolateu(t − x1,0).

4.3. Extrapolation schemes.As a final alternative, one can try to use the time sym-
metric formula (1.3) for all grid points. This involves the valueu(x1 − t,0), which requires
extrapolation from the known data atx = 0, x1, x2, . . .

5. A numerical example. We have implemented simple versions of the various meth-
ods described above: the second order quadrature scheme (Q2), the interpolation scheme
using linear and cubic interpolation (I1, I3), and the extrapolation scheme using linear ap-
proximation (X1). For the sake of comparison, we use the same values ofuxx as in the
quadrature approach, but march using the simplest leapfrog scheme [3]

ũ(x, t) = 2u(x,0)− u(x,−t)+ t2uxx(x,0).(5.1)

We will denote this method byL F2.
We consider the wave equation on [0,1] as an initial/boundary-value problem with exact

solution sin(x − t) + sin(x − t − 1
2). We setx1 = 1.0 · 10−5, xN+1 = 1− 1.0 · 10−6, and

placeN − 1 equispaced points on the interval [x1, xN+1]. With N = 16,32,64,128,256,
both the first and last cells are extremely small in comparison with1t = (xN+1 − x1)/N .
The calculation is terminated afterN steps, at which point we measure theL2 error of the
solution. The scheme used at the right boundary (x = 1) is analogous to the one described
above at the left boundary (x = 0).

Results of the methodsQ2, I1, I3, X1, L F2 are sumarized in Table 5.1.
Q2, I1, andI3 appear to be stable, while both the extrapolation and leapfrog schemes

diverge. It is also worth noting thatQ2 is globally second order accurate,I1 is globally first
order accurate, andI3 is globally third order accurate. This is consistent with a straightfor-
ward local error analysis. The reason that the first order schemeI1 is more accurate thanQ2
for small N is that we are using an exact formula away from the irregular nodes in the former
and a second order accurate quadrature at all points in the latter.
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TABLE 5.1
Performance of the quadrature, interpolation, extrapolation, and leapfrog schemes. The first column lists the

number of subintervals in the uniform grid region. The second through the fifth columns list theL2 error from using
the indicated evolution scheme afterN steps.

N E2(Q2) E2(I1) E2(I3) E2(X1) E2(L F2)
16 0.58 · 10−4 0.31 · 10−6 0.79 · 10−10 0.17 · 1054 0.35 · 1075

32 0.12 · 10−4 0.16 · 10−6 0.97 · 10−11 0.39 · 10104 0.42 · 10150

64 0.28 · 10−5 0.81 · 10−7 0.11 · 10−11 – –
128 0.67 · 10−6 0.41 · 10−7 0.14 · 10−12 – –
256 0.16 · 10−6 0.19 · 10−7 0.27 · 10−13 – –

6. Conclusions.We have derived a new exact representation for solutions of the wave
equation. Theorem 2.1 and theorem 3.1 may be of analytical interest in their own right, but
we have concentrated in this note on exploring some numerical consequences. We believe
that marching schemes based on this approach have advantageous stability properties when
compared to existing methods, most notably in removing the “small cell” problems which
arise when using unstructured grids or regular Cartesian meshes in complex geometries. Al-
though small cells can be easily eliminated in one dimension, at some cost in accuracy, doing
so in two or three dimensions is more complicated and results in greater loss of accuracy.
Furthermore, higher-order discretizationsrequiresmall cells near the boundary to avoid the
Runge phenomenon.

We have illustrated the advantages in the simplest one-dimensional model problem, but
the extension to higher dimensions is straightforward. Suppose, for example, that we are
solving the wave equation in a domain� ⊂ Rd . If a point x is within a time stept of the
domain boundary∂�, we define the function

ũ(x, τ ) = 2u(x,0)− u(x,−τ)+
∫

Sτ∩�
Gd (|x− y|, τ )1u(y,0) dy(6.1)

whereSτ = {y : |y − x| ≤ τ }. Whereas in one dimension, the exact solution is given by
(4.5), it is now of the form

u(x, t) = ũ(x, t)+ B(∂�, ũ, g).(6.2)

The operatorB(∂�, ũ, g) describes the exact solution to the Dirichlet problem with zero
initial data and boundary conditiong(x, t) − ũ(x, t). This can be written out explicitly in
terms of hyperbolic potential theory and can easily be generalized to Neumann or Robin
boundary value problems.

It is not surprising, perhaps, that robustness and stability come at a price. In our formu-
lation, that price is the construction of appropriate quadratures for both the volume integral in
(6.1) and the boundary operatorB(∂�, ũ, g) in (6.2). Higher dimensional examples, higher-
order discretizations, and stability estimates will be reported at a later date.
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